Structural basis for negative cooperativity within agonist-bound TR:RXR heterodimers.

نویسندگان

  • Balananda-Dhurjati K Putcha
  • Edward Wright
  • Joseph S Brunzelle
  • Elias J Fernandez
چکیده

Thyroid hormones such as 3,3',5 triiodo-L-thyronine (T3) control numerous aspects of mammalian development and metabolism. The actions of such hormones are mediated by specific thyroid hormone receptors (TRs). TR belongs to the nuclear receptor family of modular transcription factors that binds to specific DNA-response elements within target promoters. These receptors can function as homo- or heterodimers such as TR:9-cis retinoic acid receptor (RXR). Here, we present the atomic resolution structure of the TRα•T3:RXRα•9-cis retinoic acid (9c) ligand binding domain heterodimer complex at 2.95 Å along with T3 hormone binding and dissociation and coactivator binding studies. Our data provide a structural basis for allosteric communication between T3 and 9c and negative cooperativity between their binding pockets. In this structure, both TR and RXR are in the active state conformation for optimal binding to coactivator proteins. However, the structure of TR•T3 within TR•T3:RXR•9c is in a relative state of disorder, and the observed kinetics of binding show that T3 dissociates more rapidly from TR•T3:RXR•9c than from TR•T3:RXR. Also, coactivator binding studies with a steroid receptor coactivator-1 (receptor interaction domains 1-3) fragment show lower affinities (K(a)) for TR•T3:RXR•9c than TR•T3:RXR. Our study corroborates previously reported observations from cell-based and binding studies and offers a structural mechanism for the repression of TR•T3:RXR transactivation by RXR agonists. Furthermore, the recent discoveries of multiple endogenous RXR agonists that mediate physiological tasks such as lipid biosynthesis underscore the pharmacological importance of negative cooperativity in ligand binding within TR:RXR heterodimers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterodimers and receptor mosaics of different types of G-protein-coupled receptors.

Through an assembly of interacting GPCRs, heterodimers and high-order heteromers (termed receptor mosaics) are formed and lead to changes in the agonist recognition, signaling, and trafficking of participating receptors via allosteric mechanisms, sometimes involving the appearance of cooperativity. This field has now become a major research area, and this review deals with their physiology bein...

متن کامل

Role of the Second Extracellular Loop of the Adenosine A1 Receptor on Allosteric Modulator Binding, Signaling, and Cooperativity.

Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A...

متن کامل

Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity.

The monomeric model of rhodopsin-like G protein-coupled receptors (GPCRs) has progressively yielded the floor to the concept of GPCRs being oligo(di)mers, but the functional correlates of dimerization remain unclear. In this report, dimers of glycoprotein hormone receptors were demonstrated in living cells, with a combination of biophysical (bioluminescence resonance energy transfer and homogen...

متن کامل

Selectivity of delta- and kappa-opioid ligands depends on the route of central administration in mice.

The existence of heterodimeric opioid receptors has introduced greater complexity to the in vivo characterization of pharmacological selectivity of agonists by antagonists. Because of the possibility of cooperativity between receptors organized as heterodimers, it is conceivable that selective antagonists may antagonize an agonist bound to a neighboring, allosterically coupled receptor. As a co...

متن کامل

Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers.

It is well established that most G protein-coupled receptors are able to form homo- and heterodimers, although the functional consequences of this process often remain unclear. CCR5 is a chemokine receptor that plays an important role in inflammatory diseases and acts as a major coreceptor for human immunodeficiency viruses. CCR5 was previously shown to homodimerize and heterodimerize with CCR2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 16  شماره 

صفحات  -

تاریخ انتشار 2012